เป็นนักศึกษาสาขาวิชาภาษาอังกฤษ คณะครุสาสตร์ มหาวิทยาลัยราชภัฎสุราษฏร์ธานี

ทฤษฎีบททฤษฎีบทพีทาโกรัส กล่าวไว้ว่า
“ผลรวมของพื้นที่ของรูปสี่เหลี่ยมจัตุรัสบนด้านประชิดมุมฉากทั้งสอง จะเท่ากับ พื้นที่ของรูปสี่เหลี่ยมจัตุรัสบนด้านตรงข้ามมุมฉาก”

ทฤษฎีบทพีทาโกรัส

ทฤษฎีบทพีทาโกรัส

จากภาพ จะสังเกตว่า ผลรวมของพื้นที่ของสี่เหลี่ยมสีน้ำเงินและสีแดง จะเท่ากับ พื้นที่ของสี่เหลี่ยมสีม่วง เราสามารถเขียนทฤษฎีบทนี้ให้อยู่ในรูป สมการ c2 = a2 + b2 โดยที่ a และ b เป็นความยาวด้านประชิดมุมฉากทั้งสองของสามเหลี่ยมมุมฉาก และ c เป็นความยาวด้านตรงข้ามมุมฉาก
วิธีการพิสูจน์อีกแบบสามารถแสดงได้ดังรูปด้านล่าง

 บทกลับของทฤษฎีบทปีทาโกรัสบทกลับของทฤษฎีบทปีทาโกรัสนั้นเป็นจริง โดยกล่าวไว้ดังนี้

“กำหนด a, b และ c เป็นจำนวนจริงบวกที่ a2 + b2 = c2 จะมีสามเหลื่ยมมุมฉากหนึ่งรูปที่มีความยาวด้าน เป็นจำนวนสามจำนวนนั้น และด้านที่มีความยาว a และ b จะเป็น[[ด้านประกอบมุมฉาก]
บทกลับนี้ยังปรากฏอยู่ในหนังสือ Euclid’s Elements ของ ยุคลิดด้วย โดยบทกลับนี้สามารถพิสูจน์ได้โดยใช้ กฎของโคไซน์ หรือตามการพิสูจน์ดังต่อไปนี้

“กำหนดสามเหลี่ยม ABC มีด้านสามด้านที่มีความยาว a,b และ c และ a2 + b2 = c2 เราจะต้องพิสูจน์ว่ามุมระหว่าง a และ b เป็นมุมฉาก ดังนั้น เราจะสร้างสามเหลื่ยมมุมฉากที่มีความยาวของด้านประกอบมุมฉาก เป็น a และ b แต่จากทฤษฎีบทปีทาโกรัส เราจะได้ว่าด้านตรงข้ามมุมฉาก ของสามเหลื่ยมรูปที่สองก็จะมีค่าเท่ากับ c เนื่องจากสามเหลี่ยมทั้งสองรูปมีความยาวด้านเท่ากันทุกด้าน สามเหลี่ยมทั้งสองรูปจึงเท่ากันทุกประการแบบ “ด้าน-ด้าน-ด้าน” และต้องมีมุมขนาดเท่ากันทุกมุม ดังนั้นมุมที่ด้าน a และ b มาประกอบกัน จึงต้องเป็นมุมฉากด้วย”

จากบทพิสูจน์ของบทกลับของทฤษฎีบทปีทาโกรัส เราสามารถนำไปหาว่ารูปสามเหลี่ยมใด ๆ เป็นสามเหลี่ยมมุมแหลม, มุมฉาก หรือ มุมป้าน ได้ เมื่อกำหนดให้ c เป็นความยาวของด้านที่ยาวที่สุดในรูปสามเหลี่ยม

ถ้า a2 + b2 = c2 สามเหลี่ยมนั้นจะเป็นสามเหลี่ยมมุมฉาก  , ถ้า a2 + b2 < c2 สามเหลี่ยมนั้นจะเป็นสามเหลี่ยมมุมแหลม    , ถ้า a2 + b2 > c2 สามเหลี่ยมนั้นจะเป็นสามเหลี่ยมมุมป้าน

ที่มา th.wikipedia.org/wiki/

About these ads

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

Tag Cloud

ติดตาม

Get every new post delivered to your Inbox.

%d bloggers like this: